Актуальная бесконечность. Что такое бесконечность? Бесконечность в естествознании

Бесконечность

Термин бесконечность может описывать несколько различных понятий, в зависимости от области применения, будь это математика, физика, философия, теология или повседневная жизнь.

Потенциальная и актуальная бесконечность

Когда говорят, что некоторая величина потенциально бесконечны, то подразумевается, что она может быть неограниченно увеличена. Альтернативой является понятие актуальной бесконечности, которая означает величину, которая не имеет конечной меры. Пример: второй постулат Евклида утверждает не бесконечность длины прямой линии, а всего лишь то, что «прямую можно непрерывно продолжать». Это потенциальная бесконечность. Если же рассмотреть всю бесконечную прямую, то она дает пример актуальной бесконечности.

Античные философы и математики признавали, как правило, только потенциальную бесконечность, решительно отвергая возможность оперировать с актуально бесконечными атрибутами. Согласно этой доктрине формулировались научные утверждения. Например, теорема о бесконечности множества простых чисел в античных математиков формулировалась так: «Каково бы ни было простое число P, существует простое число, большее, чем P ».

. Всегда можно придумать большее число, потому что количество частей, на которые можно разделить отрезок, не имеет границ. Поэтому бесконечность потенциальная, никогда не действительна; которое бы число делений ни задали, всегда потенциально можно поделить на большее число.

Именно Аристотель сделал большой вклад в осознание бесконечности, разделив ее на потенциальную и актуальную и вплотную подойдя с этой стороны к основам математического анализа, а также указав на пять источников учения о ней:

  • Время;
  • Разделение величин;
  • Неисчерпаемость творений природы;
  • Само понятие границы, выталкивает за ее пределы;
  • Мышления, которое является неудержимым.

Бесконечность в культуре и философии

Бесконечность в большинстве культур появилась как абстрактное количественное обозначение чего необозримо большого в применении к сущностям без пространственных или временных границ.

Математическом происхождению символа бесконечности предшествовал религиозный аспект.

Понятие бесконечности развивалось в философии и теологии наряду с точными науками и естествознанием. Например, в теологии бесконечность Бога не столько дает количественное определение, сколько означает неограниченность и непостижимость. В философии бесконечность долгое время рассматривалась как атрибут пространства и времени ; в наши дни это дискуссионный вопрос космологии. Например, древним символом бесконечности, что встречается в совершенно разных культурах, есть змей Уроборос, которого иногда изображают таким, что сворачивается в виде перевернутой восьмерки.

Бесконечность в естествознании

В философии интенсивно обсуждались два вопроса, связанные с бесконечностью: вопрос о конечности или бесконечности вселенной в пространстве и времени и вопрос о возможности бесконечного деления. Актуальность этих философских вопросов несколько уменьшилась со становлением современных естественнонаучных теорий: физической космологии и атомистики.

В современной физической космологии доминирует теория Большого взрыва, по которой Вселенная, в той форме, в которой мы можем его себе представить, зародился примерно 13,8 млрд лет назад. Вопрос о том, что предшествовало, и то вообще предшествовало, Большом взрыве, остается неразрешимым. Остается невыясненной судьба Вселенной в далеком будущем — ограничением здесь является недостаточность данных о его физических параметрах.

Читать еще:  20 ноября чей день рождения.

По современным уявленннямы естествознания о форме Вселенной он является замкнутым, т.е. имеет конечный объем, хотя и ограничен. Космологический параметр плотности, который определяет форму Вселенной несколько больше единицы. Пространственных границ Вселенной физическая космология не устанавливает, но одновременно существуют пределы удаленности небесных тел, которые человек может наблюдать, связанные с конечностью скорости света и возрастом Вселенной.

Вопрос о бесконечной делимости вещества решилось в пользу существования атомов — мельчайших ее частиц. Атомы имеют сложное строение, но на субатомном уровне речь уже не идет о той же вещество.

Физические теории оперируют с абстракциями, которые связаны с понятием бесконечности. Например, физики часто рассматривают бесконечное сплошную среду, в котором распространяются монохроматические плоские волны. Хотя экспериментальных возможностей воспроизвести такую среду и такую волну нет, эти абстракции оказались плодотворными в смысле физических процессов.

Бесконечность в математике

В математике не существует одного понятия бесконечности, она наделяется особыми свойствами в каждом разделе. Более того, эти различные «бесконечности» не являются взаимозаменяемыми. Например, теория множеств рассматривает различные бесконечности, причем одна может быть больше другого. Скажем, количество целых чисел бесконечно велика (она называется счисления ). Чтобы обобщить понятие количества элементов для бесконечных множеств, в математике вводится понятие мощности множества. При этом не существует одной «бесконечной» мощности. Например, мощность множества действительных чисел больше мощность множества целых чисел, так как между этими множествами можно построить взаимно-однозначное соответствие ( биекцию ), а целые числа включенных в действительные. Таким образом, в этом случае « число элементов » (мощность) одного множества более «бесконечное» «числа элементов» (мощности) другого. Основоположником этих понятий был немецкий математик Георг Кантор.

В математическом анализе множеству действительных чисел добавляются два несобственные числа, которые обозначаются символами и и применяются для определения предельных значений и сходимости. В данном случае речь о «воспринимаемая» бесконечность не идет, так как любое утверждение, содержащее этот символ, можно записать, используя только конечные числа и кванторы. Эти символы, как и многие другие, были введены для сокращения записи более длинных выражений.

Символ бесконечности

Джон Волис ввел символ бесконечности в научной литературе.

Точное происхождение символа бесконечности ? неизвестно.

Наиболее вероятное объяснение состоит в том, что символ бесконечности происходит от формы ленты Мебиуса. Опять же, можно представить бесконечное путешествие по ее поверхности.

Ввод символа бесконечности ? часто приписывают Джону Волису в 1655 в его сочинении De sectionibus conicis. Одно из мнений о том, почему он выбрал этот символ является то, что он происходит из римского записи числа 1000 происходивший от этрусского записи числа1000, который выглядел вроде этого CI0 и иногда использовался для обозначения понятия «много». Другим мнением является то, что он происходит от греческой буквы ? омега, последней буквы в греческом алфавите. Или еще, так как вся верстка проводилась вручную, ? легко верстались как 8 возвращена на 90°.

В кодировке Unicode бесконечность обозначена символом ? (U +221 E).

109.201.148.198 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Бесконечность

Бесконечность — концепция, используемая в математике, философии и естественных науках. Бесконечность какого-то понятия или атрибута некоторого объекта означает невозможность указать для него границы или количественную меру. Точное значение этого термина несколько различается в зависимости от области применения — математика, физика, философия, теология или повседневная жизнь.

Читать еще:  Толкование нового завета феофилактом болгарским. Комментарии Баркли: от Иоанна

Содержание

Потенциальная и актуальная бесконечность

Когда говорят, что некоторая величина потенциально бесконечна, то имеется в виду, что она может быть неограниченно увеличена. Альтернативой является понятие актуальной бесконечности, которая означает, что рассматривается (как реально существующая) величина, не имеющая конечной меры. Пример: второй постулат Евклида утверждает не бесконечность длины прямой линии, а всего лишь то, что «прямую можно непрерывно продолжать». Это потенциальная бесконечность. Если же рассмотреть всю бесконечную прямую, то она даёт пример актуальной бесконечности.

Античные философы и математики признавали, как правило, только потенциальную бесконечность, решительно отвергая возможность оперировать с актуально бесконечными атрибутами [1] . Соответственно этой доктрине формулировались научные утверждения. Например, теорема о бесконечности множества простых чисел у античных математиков формулировалась так: «Каково бы ни было простое число P, существует простое число, большее, чем P».

… Всегда возможно придумать большее число, потому что количество частей, на которые можно разделить отрезок, не имеет предела. Поэтому бесконечность потенциальна, никогда не действительна; какое бы число делений ни задали, всегда потенциально можно поделить на большее число [2] .

Именно Аристотель сделал большой вклад в осознание бесконечности, разделив её на потенциальную и актуальную и вплотную подойдя с этой стороны к основам математического анализа, а также указав на пять источников представления о ней:

  • время;
  • разделение величин;
  • неиссякаемость творящей природы;
  • само понятие границы, толкающее за её пределы;
  • мышление, которое неостановимо.

Бесконечность в культуре и философии

Бесконечность в большинстве культур появилась как абстрактное количественное обозначение чего-то непостижимо большого, в применении к сущностям без пространственных или временных границ.

Математическому происхождению символа бесконечности предшествовал [3] религиозный аспект. Подобные символы были найдены среди Тибетских наскальных гравюр; змея, кусающая свой хвост, или змея бесконечности, часто изображается в форме такого символа.

Понятие бесконечности получило развитие в философии и теологии наравне с точными науками. К примеру, в теологии бесконечность Бога не столько даёт количественное определение, сколько означает неограниченность и непостижимость. В философии бесконечность долгое время рассматривалась также как атрибут пространства и времени; в наши дни это дискуссионный вопрос космологии. Например, древнейшим, первым известным, встречающимся в совершенно различных культурах символом бесконечности является змей Уроборос, иногда разворачиваемый в виде перевёрнутой восьмёрки.

Бесконечность в математике

В математике не существует одного понятия бесконечности, она наделяется особыми свойствами в каждом разделе. Более того, эти различные «бесконечности» не взаимозаменяемы. [источник не указан 106 дней] К примеру, теория множеств подразумевает разные бесконечности, причём одна может быть больше другой. Скажем, количество целых чисел бесконечно большое (оно называется счётным). Чтобы обобщить понятие количества элементов для бесконечных множеств, в математике вводится понятие мощности множества. При этом не существует одной «бесконечной» мощности. Например, мощность множества действительных чисел больше мощности целых чисел, потому что между этими множествами нельзя построить взаимно-однозначное соответствие (биекцию), а целые числа включены в действительные. Таким образом, в этом случае «число элементов» (мощность) одного множества «бесконечней» «числа элементов» (мощности) другого. Основоположником этих понятий был немецкий математик Георг Кантор.

В математическом анализе ко множеству действительных чисел добавляются два символа и , применяющиеся для определения граничных значений и сходимости. Сто́ит отметить, что в этом случае речь об «осязаемой» бесконечности не идёт, так как любое утверждение, содержащее этот символ, можно записать, используя только конечные числа и кванторы. Эти символы, как и многие другие, были введены для сокращения записи более длинных выражений.

Читать еще:  Когда праздник вознесение в году. Вознесение Господне — праздник праздников! Поздравления в прозе

Символ

В 1655 году Джон Валлис издаёт большой трактат «О конических сечениях» (De sectionibus conicis), где на стр. 5 появляется придуманный им [4] [5] символ бесконечности: ∞. В Юникоде бесконечность обозначена символом ∞ (U+221E), он включён в типографскую раскладку Бирмана версии 2.0 ( AltGr + 8 ).

Актуальная и потенциальная бесконечность

Бесконечность недостижима, следовательно, ее невозможно измерить. У нее отсутствует то, что древние греки именовали метрон, поэтому она принадлежит к категории хаоса. По этой причине Платон и Пифагор называли бесконечность апейрон. Позднее Анаксимандр придал этому слову смысл, схожий с тем, что подразумеваем под этим понятием мы, — «беспредельный».

Однако наиболее смело и систематично с проблемой бесконечности работал Аристотель, определив в своем труде « Физика» два разных типа бесконечности: потенциальную бесконечность — неостановимый процесс роста, и актуальную бесконечность — реально существующую величину, не имеющую конечной меры. Математики долго спорили об этих определениях, пока Кантор не доказал математически существование бесконечного числа актуальных бесконечностей с помощью инструмента, который создал сам — теории множеств.

Слова, обозначающие два различных типа бесконечности, не совсем удачны или по меньшей мере неинтуитивны.
Возможно, более уместно (но тоже не совсем удобно) было бы называть актуальную бесконечность теоретической, а потенциальную бесконечность — истинной бесконечностью.

Рассмотрим разницу между этими понятиями на примере. Последовательность натуральных чисел 1, 2, 3, 4,… бесконечна. Изначально никто не подвергает это сомнению, поскольку для любого сколь угодно большого числа n мы всегда можем получить следующее число, n+1. Но одно дело — иметь возможность выполнить подобное действие, и совсем другое — сделать это в реальности и получить результат. Это очень тонкое различие. «Иметь возможность выполнить действие» определяет потенциальную бесконечность, полученный результат такого действия — актуальную бесконечность.

Покинем на время мир математики, чтобы в более свободной форме объяснить разницу между этими понятиями. Предположим, что я нарисовал перед собой на полу прямую. Если я сделаю шаг вперед, то перешагну ее. Это потенциально возможное действие. Когда я выполнил это действие и оказался по другую сторону прямой, я актуализировал этот потенциал. Существует четкая разница между потенциально возможным действием и совершенным в действительности. Например, может случиться так, что я соберусь начать действие, но произойдет землетрясение и в полу образуется огромный разлом, который не даст мне перешагнуть прямую.

То, что никто не может записать все целые числа, — неоспоримый факт. Также верно, что никто никогда не видел двух параллельных прямых, поскольку прямые бесконечны и мы можем видеть лишь отрезки этих прямых. Значит ли это, что параллельные прямые не существуют? Они существуют настолько же, насколько существуют прямые вообще, но есть ли на самом деле бесконечная прямая? Евклид в своей знаменитой книге «Начала» пытался рассматривать эту тему: упоминая прямые, он говорил об «отрезках, длина которых может быть произвольно большой». Это весьма явная параллель с потенциальной бесконечностью.

Источники:

http://studopedia.ru/view_filosofiya.php?id=84
http://dic.academic.ru/dic.nsf/ruwiki/12617
http://matemonline.com/2013/05/actual-and-potential-infinity/

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector