Число не делится без остатка на 5. Признаки делимости, или что не поделили числа

Признаки делимости чисел

Признаки делимости чисел– это правила, позволяющие не производя деления сравнительно быстро выяснить, делится ли это число на заданное без остатка.
Некоторые из признаков делимости довольно просты, некоторые сложнее. На этой странице Вы найдете как признаки делимости простых чисел, таких как, например, 2, 3, 5, 7, 11, так и признаки делимости составных чисел, таких, как 6 или 12.
Надеюсь, данная информация будет Вам полезной.
Приятного обучения!

Признак делимости на 2

Это один из самых простых признаков делимости. Звучит он так: если запись натурального числа оканчивается чётной цифрой, то оно чётно (делится без остатка на 2), а если запись числа оканчивается нечётной цифрой, то это число нечётно.
Другими словами, если последняя цифра числа равна 2, 4, 6, 8 или — число делится на 2, если нет, то не делится
Например, числа: 234, 827, 1276, 9038, 502 делятся на 2, потому что они чётные.
А числа: 235, 137, 2303
на 2 не делятся, потому что они нечетные.

Признак делимости на 3

У этого признака делимости совсем другие правила: если сумма цифр числа делится на 3, то и число делится на 3; если сумма цифр числа не делится на 3, то и число не делится на 3.
А значит, чтобы понять, делится ли число на 3, надо лишь сложить между собой цифры, из которых оно состоит.
Выглядит это так: 3987 и 141 делятся на 3, потому что в первом случае 3+9+8+7=27 (27:3=9 — делится без остака на 3), а во втором 1+4+1=6 (6:3=2 — тоже делится без остака на 3).
А вот числа: 235 и 566 на 3 не делятся, потому как 2+3+5=10 и 5+6+6=17 (а мы знаем, что ни 10 ни 17 не делятся на 3 без остатка).

Признак делимости на 4

Этот признак делимости будет посложнее. Если последние 2 цифры числа образуют число, делящееся на 4 или это 00, то и число делится на 4, в противном случае данное число не делится на 4 без остатка.
Например: 100 и 364 делятся на 4, потому что в первом случае число оканчивается на 00, а во втором на 64, которое в свою очередь делится на 4 без остатка (64:4=16)
Числа 357 и 886 не делятся на 4, потому что ни 57 ни 86 на 4 не делятся, а значит не соответствуют данному признаку делимости.

Признак делимости на 5

И опять перед нами довольно простой признак делимости: если запись натурального числа оканчивается цифрой 0 или 5, то это число делится без остатка на 5. Если же запись числа оканчивается иной цифрой, то число без остатка на 5 не делится.
Это значит, что любые числа, оканчивающиеся цифрами и 5, например 12355 и 43, подпадают под правило и делятся на 5.
А, к примеру, 15493 и 564 не оканчиваются на цифру 5 или 0, а значит они не могут делиться на 5 без остатка.

Признак делимости на 6

Перед нами составное число 6, которое является произведением чисел 2 и 3. Поэтому признак делимости на 6 тоже является составным: для того, чтобы число делилось на 6, оно должно соответствовать двум признакам делимости одновременно: признаку делимости на 2 и признаку делимости на 3. При этом обратите внимание, что такое составное число как 4 имеет индивидуальный признак делимости, ведь оно является призведением числа 2 на само себя. Но вернемся к признаку делимости на 6.
Числа 138 и 474 чётные и отвечают признакам делимости на 3 (1+3+8=12, 12_3=4 и 4+7+4=15, 15_3=5), а значит они делятся на 6. Зато 123 и 447 хоть и делятся на 3 (1+2+3=6, 6_3=2 и 4+4+7=15, 15_3=5), но они нечётные, а значит не соответсвуют признаку делимости на 2, а следовательно и не соответсвуют признаку делимости на 6.

Признак делимости на 7

Этот признак делимости более сложный: число делится на 7, если результат вычитания удвоенной последней цифры из числа десятков этого числа делится на 7 или равен 0.
Звучит довольно запутанно, но на практике просто. Смотрите сами: число 959 делится на 7, потому что 95-2*9=95-18=77, 77_7=11 (77 делится на 7 без остатка). Причем если с полученным во время преобразований числом возникли сложности (из-за его размера сложно понять, делится оно на 7 или нет, то данную процедуру можно продолжать столько раз, сколько Вы сочтете нужным).
Например, 455 и 45801 обладают признаками делимости на 7. В первом случае все довольно просто: 45-2*5=45-10=35, 35_7=5. Во втором случае мы поступим так: 4580-2*1=4580-2=4578. Нам сложно понять, делится ли 4578 на 7, поэтому повторим процесс: 457-2*8=457-16=441. И опять воспользуемся признаком делимости, так как перед нами пока еще трехзначное число 441. Итак, 44-2*1=44-2=42, 42_7=6, т.е. 42 делится на 7 без остатка, а значит и 45801 делится на 7.
А вот числа 111 и 345 не делятся на 7, потому что 11-2*1=11-2=9 (9 не делится без остатка на 7) и 34-2*5=34-10=24 (24 не делится без остатка на 7).

Читать еще:  Узнать что ожидает в будущем. Как узнать, что ждет меня в ближайшем будущем? Распространённые методы

Признак делимости на 8

Признак делимости на 8 звучит так: если последние 3 цифры образуют число, делящееся на 8, или это 000, то заданное число делится на 8.
Числа 1000 или 1088 делятся на 8: первое оканчивается на 000, у второго 88:8=11 (делится на 8 без остатка).
А вот числа 1100 или 4757 не делятся на 8,так как числа 100 и 757 не делятся без остатка на 8.

Признак делимости на 9

Этот признак делимости схож с признаком делимости на 3: если сумма цифр числа делится на 9, то и число делится на 9; если сумма цифр числа не делится на 9, то и число не делится на 9.
Например: 3987 и 144 делятся на 9, потому что в первом случае 3+9+8+7=27 (27:9=3 — делится без остака на 9), а во втором 1+4+4=9 (9:9=1 — тоже делится без остака на 9).
А вот числа: 235 и 141 на 9 не делятся, потому как 2+3+5=10 и 1+4+1=6 (а мы знаем, что ни 10 ни 6 не делятся на 9 без остатка).

Признаки делимости на 10, 100, 1000 и другие разрядные единицы

Данные признаки делимости я объединил потому, что их можно описать одинаково: число делится на разрядную единицу, если количество нулей на конце числа больше или равно количеству нулей у заданной разрядной единицы.
Другими словами, например, мы имеем такие числа: 654, 46400, 867000, 645. из них все делятся на 1; 46400 и 867000 делятся еще и на 100; и лишь одно из них — 867000 делится на 1000.
Любые числа, у которых количество нулей на конце меньше чем у разрядной единицы, не делятся на эту разрядную единицу, например 60030 и 793 не делятся 100.

Признак делимости на 11

Для того, чтобы выяснить, делится ли число на 11, надо получить разность сумм четных и нечетных цифр этого числа. Если данная разность равна 0 или делится на 11 без остатка, то и само число делится на 11 без остатка.
Чтобы было понятнее, предлагаю рассмотреть примеры: 2354 делится на 11, потому что (2+5)-(3+4)=7-7=0. 29194 тоже делится на 11, так как (9+9)-(2+1+4)=18-7=11.
А вот 111 или 4354 не делятся на 11, так как в первом случае у нас получается (1+1)-1=1, а во втором (4+5)-(3+4)=9-7=2.

Признак делимости на 12

Число 12 является составным. Его признаком делимости является соответствие признакам делимости на 3 и на 4 одновременно.
Например 300 и 636 соответствуют и признакам делимости на 4 (последние 2 цифры это нули или делятся на 4) и признакам делимости на 3 (сумма цифр и первого и втророго числа делятся на 3), а занчит, они делятся на 12 без остатка.
А вот 200 или 630 не делятся на 12, потому что в первом случае число отвечает лишь признаку делимости на 4, а во втором — лишь признаку делимости на 3. но не обоим признакам одновременно.

Признак делимости на 13

Признаком делимости на 13 является то, что если число десятков числа, сложенное с умноженными на 4 единицами этого числа, будет кратно 13 или равно 0, то и само число делится на 13.
Возьмем для примера 702. Итак, 70+4*2=78, 78_13=6 (78 делится без остатка на 13), значит и 702 делится на 13 без остатка. Еще пример — число 1144. 114+4*4=130, 130_13=10. Число 130 делится на 13 без остатка, а значит заданное число соответсвует признаку делимости на 13.
Если же взять числа 125 или 212, то получаем 12+4*5=32 и 21+4*2=29 соответсвенно, и ни 32 ни 29 не делятся на 13 без остатка, а значит и заданные числа не делятся без остатка на 13.

Делимость чисел

Как видно из вышеперечисленного, можно предположить, что к любому из натуральных чисел можно подобрать свой индивидуальный признак делимости или же «составной» признак, если число кратно нескольким разным числам. Но как показывает практика, в основном чем больше число, тем сложнее его признак. Возможно, время ,потраченное на проверку признака делимости, может оказаться равно или больше чем само деление. Поэтому мы и используем обычно простейшие из признаков делимости.

Читать еще:  Историческое познание и историческое сознание. Историческое сознание

Признаки делимости на 2, 3, 4, 5, 6, 8, 9, 10 без остатка. + Признаки делимости на 11,13,25,36.

Признаки делимости на 2, 3, 4, 5, 6, 8, 9, 10 без остатка. + Признаки делимости на 11,13,25,36.

  • Признак делимости на 2:если запись натурального числа оканчивается четной цифрой, то это число делится без остатка на 2, а если нечетной цифрой, то число без остатка не делится на 2. Короче говоря, четное число делится на 2, нечетное не делится на 2.
  • Признак делимости на 3: если сумма цифр числа делится на 3, то и число делится на 3. Если сумма цифр не делится на 3, то и число не делится на 3. Примеры: а)276 делится на 3, так как 2 + 7 + 6 = 15, а 15 делится на 3; б)563 не делится на 3, так как 5 + 6 + 3 = 14, а 14 не делится на 3.
  • Признак делимости на 4: число делится на 4, если оканчивается на 00, или число, составленное из двух последних цифр данного числа, делится на 4. Примеры: а)78 536 делится на 4, так как 36 делится на 4; б)8422 не делится на 4, так как 22 не делится на 4.
  • Признак делимости на 5: если запись натурального числа оканчивается цифрами 0 или 5, то это число делится без остатка на 5. Если же запись числа оканчивается иной цифрой, то число без остатка на 5 не делится.а)370 и 1485 делятся без остатка на 5; б)числа 537 и 4008 без остатка на 5 не делятся.
  • Признак делимости на 6: число делится на 6, если оно делится одновременно на 2 и на 3. В противном случае оно на 6 не делится. Примеры: а)2862 делится на 6, так как 2862 делится и на 2, и на 3; б)3754 не делится на 6, так как 3754 не делится на 3
  • Признак делимости на 8: число делится на 8, если оканчивается на 000, или число, составленное из трех последних цифр данного числа, делится на 4. Примеры: а)78 000 делится на 0, так как оканчивается на 000; б)8422 не делится на 8, так как 422 не делится на 8.
  • Признак делимости на 9: если сумма цифр числа делится на 9, то и само число делится на 9. Если сумма цифр числа не делится на 9, то и число не делится на 9. Примеры: а)5787 делится на 9, так как 5 + 7 + 8 + 7= 27, а 27 делится на 9; б)359 не делится на 9, так как 3 + 5 + 9 = 17, а 17 не делится на 9.
  • Признак делимости на 10: если запись натурального числа оканчивается цифрой 0, то это число делится без остатка на 10. Если запись натурального числа оканчивается другой цифрой, то оно не делится без остатка на 10. Примеры: а)680 делится на 10; б)104 не делится на 10 без остатка.

Признак делимости на 5: примеры, доказательство

Продолжаем цикл статей на тему признака делимости и здесь остановимся на признаке делимости на 5 : сформулируем признак, приведем его доказательство, а также разберем характерные примеры, которые встречаются в различных заданиях на вступительных испытаниях.

Признак делимости на 5 , примеры

Формулируется признак делимости на пять очень просто: число делится на пять в том случае, если запись этого числа справа содержит ноль или пять. Если запись целого числа справа содержит любую другую цифру, то число на пять без остатка не делится.

Благодаря этому признаку мы можем определить возможность деления на 5 до начала вычислений, визуально.

По свойству делимости на 5 делится 0 , так как 0 делится на любое целое число и дает в результате 0 . Если говорить об однозначных натуральных числах, то из них на 5 без остатка делится только 5 . Остальные числа от 1 до 9 на 5 без остатка не делятся.

Какие из чисел 74 , − 900 , 10 000 , − 799 431 , 355 , − 5 делятся на 5 ?

Решение

Из всех приведенных выше чисел 0 или 5 в записи справа содержат только числа — 900 , 10000 , 355 и — 5 . Эти числа делятся на 5 . Остальные числа на 5 без остатка не делятся.

Ответ: − 900 , 10 000 , 355 и — 5 делятся на 5 .

Доказательство признака делимости на 5

Приведем теорему и проведем ее доказательства.

Необходимым и достаточным основанием для того, чтобы утверждать, что целое число a делится на 5 , является наличие в записи числа a справа цифр 0 или 5 .

Для начала обратимся к доказательству вспомогательного утверждения, согласно которому произведение a 1 · 10 , где a 1 – целое число, делится на 5 .

Основываясь на свойстве делимости, мы можем утверждать следующее:
если целое число a делится на целое число b , то произведение m · a , где m – любое целое число, делится на b . Применив это свойство к описанной ситуации, получаем: так как число 10 делится на 5 , то и произведение a 1 · 10 тоже делится на 5 .

Читать еще:  Садовый участок по фен шуй схема. Все секреты создания сада по фен шуй

Теперь мы готовы перейти к доказательству теоремы.

Согласно правилу умножения на 10 мы можем представить любое целое число a , в записи которого справа находится 0 , представить как произведение a 1 · 10 . Если в записи числа а справа содержится любая другая цифра a 0 , то a можно записать равенством вида a = a 1 · 10 + a 0 .

Примером записи может быть: 54 327 = 5 432 · 10 + 7 .

Теперь вспомним свойства делимости. В частности, вот это: если в равенстве a = s + t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b . Это свойство понадобится нам для доказательства теоремы далее.

Мы уже установили, что произведение a 1 · 10 из равенства a = a 1 · 10 + a 0 делится на 5 . Согласно свойству делимости, число a делится на пять при условии, что a 0 делится на 5 . Это возможно при двух значениях a 0 = 0 и a 0 = 5 . В то же время, если a 0 делится на 5 , то и a делится на 5 . Так мы доказали достаточность и необходимость.

Другие случаи делимости на 5

Рассмотрим для начала примеры, решение которых проще всего получить с помощью признака делимости на 5 .

Делится ли на 5 значение выражения 10 2 · n − 5 при некотором натуральном n ?

Решение

Для того, чтобы дать ответ на поставленный вопрос, подставим разные значения n в исходное выражение. Получаем: n = 1 имеем 10 2 · 1 − 5 = 95 , при n = 210 2 · 2 − 5 = 9 995 , при n = 3 – 102 · 3 − 5 = 999 995 , … . Получается, что независимо от значения n мы получаем запись, которая справа содержит цифру 5 . Согласно признаку делимости на пять можно утверждать, что выражение 10 2 · n − 5 делится на 5 при любом натуральном n .

Ответ: Да.

Для того, чтобы доказать делимость на 5 , мы можем также использовать метод математической индукции. Сейчас мы продемонстрируем применение этого метода для того, чтобы доказать, что при любом натуральном n значение выражения 6 n + 10 n + 14 делится на 5 .

Докажите, что 6 n + 10 n + 14 делится на 5 при любом натуральном n .

Решение

Воспользуемся алгоритмом применения метода математической индукции. Начнем с проверки того, делится ли значение выражения 6 n + 10 n + 14 на 5 при n = 1 . Получаем: 6 1 + 10 · 1 + 14 = 30 . Число 30 содержит на конце записи цифру 0 , а это значит, что оно делится на 5 без остатка.

Теперь предположим, что значение выражения 6 n + 10 n + 14 будет делиться на 5 при значении n = k .

Фактически, нам нужно установить, что значение выражения 6 k + 10 k + 14 делится на 5 .

Докажем, что 6 n + 10 n + 14 при n = k + 1 делится на 5 .

6 k + 1 + 10 · ( k + 1 ) + 14 = = 6 · 6 k + 10 k + 24 = = 6 · ( 6 k + 10 k + 14 ) — 50 k — 60 = = 6 · ( 6 k + 10 k + 14 ) — 5 · ( 10 k + 12 )

Согласно свойству делимости, вся разность делится на 5 , так как выражение 6 · 6 k + 10 k + 14 делится на 5 и выражение, содержащее 5 в качестве множителя, 5 · 10 k + 12 также делится на 5 .

Ответ: 6 n + 10 n + 14 будет делиться на 5 при любом натуральном n методом математической индукции.

Здесь также применимо решение, основанное на использовании формулы бинома Ньютона. Благодаря биному Ньютона мы можем представить подобные выражения как произведение. А дальше, основываясь на свойстве делимости, мы можем утверждать, что если хотя бы один из множителей делится на 5 , то и все произведение делится на 5 .

Делится ли 6 n + 10 n + 14 ​​​​​​ на 5 при натуральных n ?

Решение

Мы можем представить 6 как сумму 5 + 1 . Далее мы применяем формулу бинома Ньютона и получаем:

6 n + 10 n + 14 = ( 5 + 1 ) n + 10 n + 14 = = ( C n 0 · 5 n + C n 1 · 5 n — 1 · 1 + ⋯ + C n n — 2 · 5 2 · 1 n — 2 + C n n — 1 · 5 · 1 n — 1 + C n n · 1 n ) + + 10 n + 14 = = 5 n + C n 1 · 5 n — 1 · 1 + ⋯ + C n n — 2 · 5 2 + n · 5 + 1 + + 10 n + 14 = = 5 n + C n 1 · 5 n — 1 · 1 + ⋯ + C n n — 2 · 5 2 + 15 n + 15 = = 5 · 5 n — 1 + C n 1 · 5 n — 2 + … + C n n — 2 · 5 1 + 3 n + 3

Это дает нам право утверждать, что произведение, которое мы получили в ходе вычислений, делится на 5 при любом натуральном n , так как выражение в скобках является целым числом, а само произведение содержит множитель 5 .

Ответ: Да, делится.

Существует еще один подход к доказательству делимости значения выражения на 5 при некотором n : мы можем доказать, что данное выражение делится на 5 при при n = 5 · m , n = 5 · m + 1 , n = 5 · m + 2 , n = 5 · m + 3 и n = 5 · m + 4 , где m – целое число. Так мы можем обосновать вывод о том, что значение выражения делится на 5 при любом целом n .

Докажите, что n 5 − n делится на 5 при любом целом n .

Решение

Раскладываем данное выражение на множители: n 5 − n = n · ( n 4 − 1 ) = n · ( n 2 − 1 ) · ( n 2 + 1 ) = n · ( n − 1 ) · ( n + 1 ) · ( n 2 + 1 ) .

Очевидно, что первый множитель n при n = 5 · m делится на 5 . Это значит, что все полученное произведение тоже делится на 5 .

Множитель n − 1 = 5 · m при n = 5 · m + 1 делится на 5 . Следовательно, все произведение n · ( n − 1 ) · ( n + 1 ) · ( n 2 + 1 ) делится на 5 согласно свойству делимости.

Множитель n 2 + 1 при n = 5 · m + 2 будет равен 25 · m 2 + 20 · m + 5 = 5 · ( 5 · m 2 + 4 · m + 1 ) . Это значит, что произведение n · ( n − 1 ) · ( n + 1 ) · ( n 2 + 1 ) делится на 5 .

Множитель n + 1 при n = 5 · m + 4 будет равен 5 · m + 5 .

Это значит, что произведение n · ( n − 1 ) · ( n + 1 ) · ( n 2 + 1 ) делится на 5 .

Ответ: n 5 − n = n · ( n − 1 ) · ( n + 1 ) · ( n 2 + 1 ) делится на 5 при любом целом n .

Источники:

http://ww009.ru/math/math_priznaki_delimosti.php
http://tehtab.ru/guide/guidemathematics/mathsfortheyoungest/dividingsimplefigures/
http://zaochnik.com/spravochnik/matematika/delimost/priznak-delimosti-na-5/

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector