Знаменитые парадоксы. Связанные с выбором

15 парадоксов, которые взорвут ваш мозг

Я знаю, что ничего не знаю. Так сказал однажды Сократ.

Это заявление само по себе парадоксально, потому как демонстрирует сложность значения одного слова.

Также оно объясняет понимание видения мира одним из основателей западной философии: вы должны подвергать сомнению всё, что вы думаете, что знаете.

Действительно, чем глубже копать, тем больше парадоксов вокруг вы начнёте видеть.

1. Чтобы дойти куда-либо, вы должны сначала пройти полпути, затем пройти половину из оставшейся половины, потом ещё половину оставшегося расстояния и так до бесконечности: таким образом, движение невозможно.

Парадокс дихотомии считается детищем древнегреческого философа Зенона, который якобы был создан для доказательства того, что Вселенная уникальна и что любое изменение, включая движение, невозможно (такого же мнения придерживался и его учитель Парменид).

Люди интуитивно отвергают этот парадокс на протяжении уже многих лет.

С математической точки зрения решение, к которому пришли ещё в 19 веке, состоит в том, чтобы принять, что половина плюс одна четверть плюс одна восьмая плюс одна шестнадцатая и так далее вплоть до одного. Это похоже на число 0,999…., которое когда-то станет 1.

Но данное теоретическое решение на самом деле не объясняет, как именно объект достигает пункта назначения. Решение этого вопроса более сложное и до сих пор не ясное, учитывая теории 20 века о материи, времени и пространстве, которые неделимы.

2. В любой момент движущийся объект неотличим от неподвижного, поэтому движение невозможно.

Это парадокс называется парадоксом стрелы, и это ещё один аргумент Зенона против движения. Проблема здесь в том, что в один момент времени проходит 0 секунд, и поэтому движение в данном случае нулевое.

Зенон утверждал, что если бы время было составлено из мгновений, то тот факт, что движение не происходит в какой-то конкретный момент, говорил бы о том, что оно не происходит вообще.

Как и парадокс дихотомии, парадокс стрелы фактически намекает на современные представления о квантовой механики. В книге “Размышления об относительности” (“Reflections of Relativity”) Кевин Браун отмечает, что в контексте специальной теории относительности объект в движении отличается от неподвижного объекта.

Относительность требует, чтобы объекты, движущиеся с различной скоростью, по-разному представлялись стороннему наблюдателю, а также, чтобы они сами по себе имели различные преставления об окружающем мире.

Интересные парадоксы

3. Если вы восстановили корабль, заменив все его деревянные части, это остался тот же корабль?

Ещё один классический парадокс из Древней Греции, “Корабль Тесея” – это парадокс о противоречиях идентичности. Его хорошо описал Плутарх.

Корабль, на котором Тесей и молодёжь Афин возвращались с Крита, имел 30 весёл, которые были сохранены вплоть до времён Димитрия Фалерея. А всё благодаря тому, что когда старые деревянные доски начали разлагаться, их заменили на новые, более крепкие.

Они держались так долго, что этот корабль стал постоянной темой обсуждения среди философов, которые говорили о логике разных вещей, которые изменяются. Одна группа философов говорила, что корабль остался тем же, в то время, как другие философы настаивали, что после замены брёвен, корабль стал другим.

4. Может ли Всемогущий создать скалу, слишком тяжёлую для того, чтобы он сам мог её поднять?

Как может существовать зло, если Бог всемогущ? Как можем мы называть себя свободными, если Бог всеведущ?

Это лишь несколько из многих существующих парадоксов, касающихся применения вопросов логики к божественной теме.

Некоторые люди могут ссылаться на эти парадоксы, объясняя тем самым, почему они не верят в высшее существо. Однако, другие говорят, что они несущественны и по разным причинам не работают.

Удивительные парадоксы

5. Существует бесконечно длинный “рог”, которые имеет конечный объём, но бесконечную площадь поверхности.

Двигаясь навстречу проблеме, появившейся в 17 веке, мы получаем один из многих парадоксов, связанных с геометрией и бесконечностью.

“Рог Гавриила” формируется путём взятия кривой y = 1/х и поворота вокруг горизонтальной оси, как показано на рисунке.

Используя методы исчисления, которые позволяют вычислить площади и объёмы построенных таким образом фигур, можно видеть, что бесконечно длинный рог фактически имеет конечный объём, равный числу пи, но бесконечную площадь поверхности.

Иными словами, в рог поместится определённое количество краски, но для того, чтобы покрыть краской всю его поверхность, потребуется её бесконечное количество.

6. Гетерологическое слово – это слово, которое не описывает себя. А описывает ли себя слово “гетерологический”?

Это один из многих парадоксов, который долго томил умы современных математиков и логиков.

Примером гетерологического слова может быть слово “глагол”, которое не является глаголом по сути (в отличие от “существительного”, которое является существительным). Другим примером может быть слово “длинный”, которое не является длинным словом (в отличие от слова “короткий”, которое является коротким словом).

Так “гетерологический” является гетеролигическим словом или нет? Если бы это было бы слово, которое не описывает себя, тогда оно бы описывало себя. А если бы оно было словом, которое описывает себя, оно бы не описывало себя.

Это связано с парадоксом Рассела, который спрашивает, содержит ли определённое множество себя в качестве элемента.

Создавая подобные самоуничтожающиеся множества, Бертран Рассел (Bertrand Russell) и другие учёные продемонстрировали важность установления тщательных правил при создании множеств, которые заложили основу математики 20 века.

Самые невероятные парадоксы

7. Пилоты могут “выйти” из боевого режима, если они психологически непригодны, но каждый, кто хочет “выйти” из боевого дежурства, доказывает, что он нормален.

“Уловка -22” – это сатирический роман о Второй мировой войне Джозефа Хеллера (Joseph Heller), в котором описывается ситуация, когда кто-то нуждается в чём-то, что можно получить только тогда, когда он в этом не нуждается.

Это так называемый парадокс саморефенеции. Главный герой романа Йоссариан столкнулся с этим парадоксом при оценке пилотной деятельности, но в итоге, куда бы он направлялся, он везде видел парадоксальные и репрессивные правила.

8. В каждой цифре есть что-то интересное.

1 – это первое ненулевое натуральное число, 2 – наименьшее простое число, 3 – первое нечётное простое число, 4 – наименьшее составное число и т.д. Когда вы наконец доберетесь до числа, которое покажется вам неинтересным, то это число окажется интересным из-за того, что оно показалось вам неинтересным.

Парадокс интересного числа основан на неточном определении слова “интересный”, что делает его несколько более глупым вариантом гетерологического парадокса и парадокса Рассела, которые полагаются на противоречивые самореференции.

Исследователь квантовых вычислений Натаниэль Джонстон (Nathaniel Johnston) нашёл умное решение парадокса. Вместо того, чтобы полагаться на интуитивное понятие слова “интересно”, как в исходном парадоксе, он определил интересное целое число как таковое, появляющееся в онлайн энциклопедии целочисленных последовательностей.

А это наборы из десятков тысяч математических последовательностей, таких как простые числа, числа Фибоначчи, пифагорейские тройки и т.д.

Исходя из этого определения, первое неинтересное число, наименьшее целое число, которое не отображалось ни в одной из последовательностей, – 11 630. Так как в энциклопедию на постоянной основе добавляются новые последовательности, некоторые из них включают в себя бывшие ранее неинтересными цифры.

Самые интересные парадоксы

9. В баре всегда есть хотя бы один клиент, для которого верно, что если пьёт он, значит пьют все.

Условные утверждения в формальной логике иногда имеют противоречивые интерпретации, а парадокс пьянства – отличный тому пример. На первый взгляд, парадокс предполагает, что один человек заставляет пить остальную часть бара.

Фактически всё это говорит о том, что было бы невозможно, чтобы все в баре пили, если бы каждый отдельно взятый клиент не пил. Поэтому там есть по крайней мере один клиент (то есть последний, который не пьёт), который выпив, мог бы сделать так, чтобы можно было сказать, что пьют все.

10. Из мяча, который можно разрезать на конечное число частей, реально сделать два других мяча одинакового размера.

Парадокс Банаха-Тарского опирается на множество странных и противоречивых свойств бесконечных множеств и геометрических вращений.

Части, на которые можно разрезать мяч, будут выглядеть очень странно, поэтому парадокс работает только в абстрактной математической сфере. Было бы отлично, если можно было взять, к примеру, яблоко, разрезать его на части и собрать два одинаковых, но меньшего размера, чтобы поделиться с другом.

Читать еще:  Сонник покупать постельное белье во сне. «Сонник постельное Белье приснилось, к чему снится во сне постельное Белье

Но физические “шары” из материального мира не могут быть разобраны как математическая сфера.

Странные парадоксы

11. Картофель весом в 100 граммов – это 99 процентов воды. Если он высохнет на 1 процент, то его новый вес составит 50 граммов.

Даже при работе по устаревшим методам с конечными величинами, математика может привести к странным результатам.

Чтобы понять картофельный парадокс, нужно внимательно взглянуть на количество содержащейся в картофеле воды.

Поскольку картошка на 99 процентов – это вода, то сухие компоненты получается равны 1 проценту. Вес картофеля – 100 граммов, следовательно, вес сухого материала – 1 грамм.

Когда 100 граммов картофеля высушивается до 98 процентов воды, то 1 грамм сухого компонента превращается в 2 грамма. А один грамм – это два процента от 50 граммов, таким и должен быть новый вес картофелины.

12. Если в комнате находятся 23 человека, очень высоки шансы, что, как минимум, двое из них родились в один и тот же день.

Ещё один удивительный математический результат: парадокс дня рождения исходит из тщательного анализа связанных с этим вероятностей.

Если в комнате находятся два человека, то вероятность того, что у них день рождения в один и тот же день, равна 1/365 (без учёта високосных лет), потому как помимо дня рождения одного человека, в году есть ещё 364 других дня, любой из которых может быть днём рождения второго человека.

Если в комнате три человека, то вероятность того, что у них у всех разные дни рождения равна 364/365 x 363/365. То есть когда мы знаем день рождения первого человека, на выбор даты рождения второго остаётся 364 дня, а для третьего – 363 дня.

Продолжая таким образом, мы доходим до количества в 23 человека, и обнаруживаем, что вероятность того, что у всех людей будут разные дни рождения опускается ниже 50 процентов, поэтому вероятность двух одинаковых дней рождения существенно повышается.

13. У друзей большинства людей больше друзей, чем у них самих.

Это кажется невозможным, но когда вы смотрите на вопрос с математической точки зрения, всё становится понятно. Наглядным примером данного парадокса служат социальные сети, в которых у большинства людей мало друзей. Но некоторые из них – это очень общительные люди, поэтому друзей у них очень много.

Эти люди очень часто “показываются” в качестве “друзей моих друзей”, поэтому они и поднимают среднее их количество.

14. Физик, занимающийся изобретением машины времени, посещает “старую” версию себя. Эта “версия” даёт ему идеи по созданию машины времени, а “молодая” версия использует эти идеи для создания непосредственно аппарата, со времени возвращаясь к старой версии себя.

Путешествие во времени, если это будет возможно, может привести к очень странным ситуациям.

Парадокс Бутстрапа – это противоположность классического парадокса дедушки. Для того, чтобы вернуться назад и не позволить себе путешествовать во времени, некоторая информация и объекты возвращаются во времени, и дают возможность позже вернуться молодой версии себя.

И тут появляется вопрос: каким образом в первый раз появились эта информация и объект. Данный парадокс обсуждали еще в 1941 году. Роберт Хайнлайн (Robert Heinlein) был одним из первых, кто поднял эту тему.

Использование данного парадокса – это не редкость в научной фантастике, а своё название парадокс взял как раз из рассказа Роберта Хайнлайна.

15. Если на Земле нет ничего уникального, тогда в нашей галактике должно существовать много инопланетных цивилизаций. Однако, люди пока не нашли доказательства наличия другой разумной жизни во Вселенной.

Некоторые люди считают молчание нашей Вселенной парадоксом. Одно из основополагающих предположений астрономии: планета Земля – это довольно обычная планета с общей солнечной системой в общей галактике, которая не является чем-то космически уникальным.

Спутник NASA обнаружил, что в нашей галактике, вероятно, есть около 11 миллиардов подобных Земле планет. Учитывая это, жизнь, подобная нам, должна была развиться где-то не слишком далеко от нас (по крайней мере, в космическом масштабе).

Но несмотря на существование мощнейших телескопов, люди не смогли обнаружить существование ни одной технологической цивилизации нигде во Вселенной. Цивилизации шумны: человечество транслирует телевизионные и радиосигналы, которые однозначно искусственны.

Такая цивилизация, как наша, должна давать признаки своего существования, которые люди бы нашли, если бы они существовали.

Более того, цивилизация, возникшая миллионы лет назад (довольно недавно с космической точки зрения), имела достаточно времени для того, чтобы хотя бы начать колонизировать галактику, а это означает, что свидетельств её существования должно быть ещё больше.

Действительно, имея в распоряжении такое количество времени, колонизирующая цивилизация смогла бы колонизировать всю Галактику. Физик Энрико Ферми (Enrico Fermi), в честь которого был назван этот парадокс, как-то во время обеденного перерыва с коллегами спросил: “Где они?”

Одно из решений парадокса бросает вызов вышеизложенной идее и говорит о том, что сложные жизни – это крайне редкая вещь во Вселенной. Другая теория утверждает, что технологические цивилизации неизбежно уничтожаются в результате ядерной войны или экологического разрушения.

Более оптимистичным решением является идея о том, что инопланетяне намеренно скрываются от нас, пока мы не станем более социально и технологически зрелыми. Ещё одна теория гласит, что чужеродные технологии настолько развиты, что мы даже не можем их распознать.

Самые знаменитые парадоксы современности

Парадоксы и противоречия присущи самым разным сферам человеческих интересов – это и физика, разумеется, и математика, и психология, и социология, и биология, конечно. Часть феноменов была замечена самыми выдающимися умами современности и относится к области науки, однако некоторые явления носят совершенно обыденный характер. Более объяснимыми и логичными их это не делает, но возможно, на некоторые кажущиеся очевидными вещи вы измените свой взгляд и точно взбодрите свой мозг.

Парадокс толерантности (терпимости)

Вероятно, самый культурный и актуальный для современного мира парадокс в этой подборке.

Идея его заключается в том, что общество, которое будет полностью толерантным, должно быть лояльным и к нетерпимости. В результате такой пассивной позиции толерантных представителей нетерпимые элементы подобного социума захватят контроль. Это сделает все такое общество принципиально нетерпимым. Поэтому, для того чтобы социальному объединению оставаться толерантным, его членам нельзя мириться с нетерпимостью.

Парадокс преднамеренно пустой страницы

В некоторые официальные документы преднамеренно включены пустые страницы. Чтобы не вводить в заблуждение тех, кто эти бумаги просматривает, чистые листы снабжают фразой: “Эта страница была намеренно оставлена пустой”. В итоге на странице оказывается размещен текст, который утверждает, что на ней ничего нет, тем самым частично заполняя ее.

Парадокс наблюдателя

Первично термин применялся в социолингвистике при исследовании особенностей случайного вербального общения в группе. Позже понятие получило более широкое применение.

Феномен заключается в том, что при попытке наблюдения за каким-либо явлением с целью изучить и оценить его течение без внешнего влияния, в естественном состоянии, объекты изучения, участвующие в эксперименте, обычно знают о факте анализа их действий, что всегда неосознанно меняет их поведение.

Парадокс Полчинского

Парадоксы, связанные с перемещением во времени, обыграны и обдуманы многократно. Они не раз становились основой сюжетов книг и фильмов. Джозеф Полчинский, занимавшийся проблемами теоретической физики, предложил рассмотрение этого вопроса на примере бильярдного шара, отправленного во временной тоннель.

Объект оказывается в прошлом именно в тот момент, чтобы встретиться с самим собой на этой же траектории, что влияет на сам факт вхождения шара во временную червоточину.

Полчинский предположил сбалансировать свой парадокс принципом Новикова, опровергающим абсурдные взаимоисключающие противоречия, связанные с пространственно-временным континуумом. Данная теоретическая поправка позволяет рассуждать о возможных изменениях в прошлом, вызванных действиями из будущего, дополнением их, но отрицает вероятность существенного влияния на ход истории.

На примере шара можно предположить, что версия из будущего не помешает объекту из прошлого войти во временной тоннель, но лишь несколько изменит его курс. Также принцип Новикова отрицает возможность уничтожить кого-то в прошлом – этому деянию обязательно что-то будет мешать.

Парадокс Пето

Невероятный факт из области анатомии и зоологии. Обнаружен и доказан биологом Ричардом Пето еще в 70-х годах прошлого столетия.

Его исследования привели к заключению, что у мышей проявления онкологических заболеваний более частые, чем у людей, а у синих китов рак встречается намного реже, чем у хомо сапиенс.

Читать еще:  Ребенок с луной во льве. Луна в знаках зодиака

Логика в этом вопросе присутствует лишь с точки зрения количества каждого вида и большей ценности крупных животных по причине их малочисленности. Возможно, в этом и заключена высшая задумка природы.

Однако с позиции науки это рассуждение непоследовательно. У существ с тысячекратно большим количеством клеток в организме по математическим расчетам, основанным на теории вероятности, шанс получить подобное заболевание значительно выше.

Парадокс Ферми

Этот феномен оспаривается все чаще и настойчивее по мере изучения космического пространства и расширения знаний о Вселенной.

Парадокс, сформулированный физиком Энрико Ферми, заключается в противоречии между высоким шансом существования жизни на других планетах и отсутствием какого бы то ни было подтверждения этого факта.

Установлено, что только в нашей галактике миллиарды звезд, образующих собственные системы с вращающимися вокруг них планетами. Учитывая количество небесных тел, какая-либо цивилизация уже должна была достичь такого уровня развития, чтобы быть в состоянии посетить ту часть космоса, которую земные ученые могут наблюдать, фиксировать изменения в ней.

Сформулировано несколько объяснений этого безмолвия:

  • огромные затраты времени для преодоления расстояний, а также другие сопутствующие трудности (наименее убедительные из всех доводы);
  • принцип невмешательства со стороны высокоразвитых цивилизаций в жизнь землян;
  • уникальность человечества (что тоже не очень вдохновляет ученых и множество простых людей – слишком велика Вселенная, а природа не тратит ресурсы настолько неразумно);
  • инопланетяне уже посещали Землю;
  • пришельцы и сейчас на нашей планете;
  • наша и другие цивилизации недостаточно долго и настойчиво ищут друг друга.

Парадокс книги “Уловка-22” (Catch-22)

Логический парадокс, заключенный в одном из поворотов сюжета романа американского писателя Джозефа Хеллера, который был опубликован в 1961 году. Действие разворачивается во время Второй мировой войны.

Пилот пытается избежать участия в боях, возлагая надежду на психиатрическую экспертизу, которая признает его несостоятельным и негодным. Он рассказывает своему врачу о попытках выхода из боя, прекращения полета. Однако именно это и подтверждает его здравомыслие, по мнению специалистов. Безумным может быть признан не тот, кто желает избежать воздушного боя, а страстно его жаждущий.

Таким образом, капитан Йоссариан становится заложником взаимоисключающих правил. Пытаясь доказать свое безумие, он должен находиться в том месте и ситуации, которых и стремится избежать.

Парадокс Монти Холла

Относится к разряду знаменитых задач теории вероятности, решение которой, на первый взгляд, не может соответствовать здравому смыслу.

Явление получило название по имени ведущего телеигры под названием “Давайте заключим сделку” (Let’s Make a Deal). Задача, которую предстоит решить участникам, кажется простой, а изменение условий игры, предлагаемое ведущим, – бессмысленным.

Вот как это происходит: участнику предлагается на выбор три двери, за двумя скрываются знакомые каждому одомашненные парнокопытные, за третьей – автомобиль. Конечно, надо угадать ту, где спрятан вожделенный приз – личный транспорт.

После того как игрок делает выбор, но дверь еще не открыта, ведущий распахивает одну из двух оставшихся без внимания участника и показывает за ней козу. Затем он дает шанс игроку изменить изначальное решение и открыть либо ту дверь, на которой он остановил выбор сразу, либо другую, пока тоже запертую.

Большинство людей не меняют свое решение, будучи уверенными, что это никак не увеличит их шансы.

Действительно, тайну скрывают лишь две преграды, возможность для каждой равна. Однако это не так. Теория вероятности приводит нас не просто к расчету шанса в 66,6 % для второй двери, но и подтверждает его на практике.

Это один из самых известных и скандальных парадоксов, вызывающий споры вокруг своей сути постоянно.

Парадокс гедонизма

Гедонизм (др.-греч. ἡδονή “наслаждение, удовольствие”) – аксиологическое учение, согласно которому удовольствие является высшим благом и смыслом жизни, единственной терминальной ценностью (тогда как все остальные ценности являются инструментальными, то есть средствами достижения удовольствия).

Факт существования данного парадокса кто-то считает неоспоримым, но есть мнение, что это лишь рассуждения и игра слов.

Если придерживаться первого мнения, то парадокс заключается во вполне логичном, имеющем практическую ценность утверждении о том, что попытки постоянно получать удовольствие и наслаждаться не приносят такого результата, скорее, чувство неудовлетворенности в вечной погоне за подобным счастьем. Состояние счастья внезапно и не может быть создано искусственно.

Противоположное мнение опирается на утверждения о неверном понимании смысла истинного наслаждения. Оно, с точки зрения приверженцев этой теории, заключено в стремлении к истине и обретении ее.

12 самых знаменитых парадоксов (2 фото)

12. Парадокс Ольберса

В астрофизике и физической космологии парадокс Ольберса – это аргумент, говорящий о том, что темнота ночного неба конфликтует с предположением о бесконечной и вечной статической Вселенной. Это одно из свидетельств нестатической Вселенной, такое, как текущая модель Большого взрыва. Об этом аргументе часто говорят как о “темном парадоксе ночного неба”, который гласит, что под любым углом зрения с Земли линия видимости закончится, достигнув звезды.
Чтобы понять это, мы сравним парадокс с нахождением человека в лесу среди белых деревьев. Если с любой точки зрения линия видимости заканчивается на верхушках деревьев, человек разве продолжает видеть только белый цвет? Это противоречит темноте ночного неба и заставляет многих людей задаться вопросом, почему мы не видим только свет от звезд в ночном небе.

11. Парадокс всемогущества

Парадокс состоит в том, что если существо может выполнять какие-либо действия, то оно может ограничить свою способность выполнять их, следовательно, оно не может выполнять все действия, но, с другой стороны, если оно не может ограничивать свои действия, то это что-то, что оно не может сделать.
Это, судя по всему, подразумевает, что способность всемогущего существа ограничивать себя обязательно означает, что оно действительно ограничивает себя. Этот парадокс часто формулируется в терминологии авраамических религий, хотя это и не является обязательным требованием.
Одна из версий парадокса всемогущества заключается в так называемом парадоксе о камне: может ли всемогущее существо создать настолько тяжелый камень, что даже оно будет не в состоянии поднять его? Если это так, то существо перестает быть всемогущим, а если нет, то существо не было всемогущим с самого начала.
Ответ на парадокс заключается в следующем: наличие слабости, такой, как невозможность поднять тяжелый камень, не попадает под категорию всемогущества, хотя определение всемогущества подразумевает отсутствие слабостей.

10. Парадокс Сорита

Парадокс состоит в следующем: рассмотрим кучу песка, из которого постепенно удаляются песчинки. Можно построить рассуждение, используя утверждения:
— 1000000 песчинок – это куча песка;
— куча песка минус одна песчинка – это по-прежнему куча песка.
Если без остановки продолжать второе действие, то, в конечном счете, это приведет к тому, что куча будет состоять из одной песчинки. На первый взгляд, есть несколько способов избежать этого заключения. Можно возразить первой предпосылке, сказав, что миллион песчинок – это не куча. Но вместо 1000000 может быть сколь угодно другое большое число, а второе утверждение будет верным при любом числе с любым количеством нулей.
Таким образом, ответ должен прямо отрицать существование таких вещей, как куча. Кроме того, кто-то может возразить второй предпосылке, заявив, что она верна не для всех “коллекций зерна” и что удаление одного зерна или песчинки все еще оставляет кучу кучей. Или же может заявить о том, что куча песка может состоять из одной песчинки.

9. Парадокс интересных чисел

Утверждение: нет такого понятия, как неинтересное натуральное число.
Доказательство от противного: предположим, что у вас есть непустое множество натуральных чисел, которые неинтересны. Благодаря свойствам натуральных чисел, в перечне неинтересных чисел обязательно будет наименьшее число.
Будучи наименьшим числом множества его можно было бы определить как интересное в этом наборе неинтересных чисел. Но так как изначально все числа множества были определены как неинтересные, то мы пришли к противоречию, так как наименьшее число не может быть одновременно и интересным, и неинтересным. Поэтому множества неинтересных чисел должны быть пустыми, доказывая, что не существует такого понятия, как неинтересные числа.

8. Парадокс летящей стрелы

Данный парадокс говорит о том, что для того, чтобы произошло движение, объект должен изменить позицию, которую он занимает. В пример приводится движение стрелы. В любой момент времени летящая стрела остается неподвижной, потому как она покоится, а так как она покоится в любой момент времени, значит, она неподвижна всегда.
То есть данный парадокс, выдвинутый Зеноном еще в 6 веке, говорит об отсутствии движения как таковом, основываясь на том, что двигающееся тело должно дойти до половины, прежде чем завершить движение. Но так как оно в каждый момент времени неподвижно, оно не может дойти до половины. Этот парадокс также известен как парадокс Флетчера.
Стоит отметить, что если предыдущие парадоксы говорили о пространстве, то следующий парадокс – о делении времени не на сегменты, а на точки.

Читать еще:  К чему снится целовать знаменитого мужчину. Сонник: к чему снится поцелуй с парнем? Приснилось, что мужчина целует руку

7. Парадокс Ахиллеса и черепахи

В данном парадоксе Ахиллес бежит за черепахой, предварительно дав ей фору в 30 метров. Если предположить, что каждый из бегунов начал бежать с определенной постоянной скоростью (один очень быстро, второй очень медленно), то через некоторое время Ахиллес, пробежав 30 метров, достигнет той точки, от которой двинулась черепаха. За это время черепаха “пробежит” гораздо меньше, скажем, 1 метр.
Затем Ахиллесу потребуется еще какое-то время, чтобы преодолеть это расстояние, за которое черепаха продвинется еще дальше. Достигнув третьей точки, в которой побывала черепаха, Ахиллес продвинется дальше, но все равно не нагонит ее. Таким образом, всякий раз, когда Ахиллес будет достигать черепаху, она все равно будет впереди.
Таким образом, поскольку существует бесконечное количество точек, которых Ахиллес должен достигнуть, и в которых черепаха уже побывала, он никогда не сможет догнать черепаху. Конечно, логика говорит нам о том, что Ахиллес может догнать черепаху, потому это и является парадоксом.

Проблема этого парадокса заключается в том, что в физической реальности невозможно бесконечно пересекать поперечно точки – как вы можете попасть из одной точки бесконечности в другую, не пересекая при этом бесконечность точек? Вы не можете, то есть, это невозможно.
Но в математике это не так. Этот парадокс показывает нам, как математика может что-то доказать, но в действительности это не работает. Таким образом, проблема данного парадокса в том, что происходит применение математических правил для нематематических ситуаций, что и делает его неработающим.

6. Парадокс Буриданова осла

Это образное описание человеческой нерешительности. Это относится к парадоксальной ситуации, когда осел, находясь между двумя абсолютно одинаковыми по размеру и качеству стогами сена, будет голодать до смерти, поскольку так и не сможет принять рациональное решение и начать есть.
Парадокс назван в честь французского философа 14 века Жана Буридана (Jean Buridan), однако, он не был автором парадокса. Он был известен еще со времен Аристотеля, который в одном из своих трудов рассказывает о человеке, который был голоден и хотел пить, но так как оба чувства были одинаково сильны, а человек находился между едой и питьем, он так и не смог сделать выбора.
Буридан, в свою очередь, никогда не говорил о данной проблеме, но затрагивал вопросы о моральном детерминизме, который подразумевал, что человек, столкнувшись с проблемой выбора, безусловно, должен выбирать в сторону большего добра, но Буридан допустил возможность замедления выбора с целью оценки всех возможных преимуществ. Позднее другие авторы отнеслись с сатирой к этой точке зрения, говоря об осле, который столкнувшись с двумя одинаковыми стогами сена, будет голодать, принимая решение.

5. Парадокс неожиданной казни

Судья говорит осужденному, что он будет повешен в полдень в один из рабочих дней на следующей неделе, но день казни будет для заключенного сюрпризом. Он не будет знать точную дату, пока палач в полдень не придет к нему в камеру. После, немного порассуждав, преступник приходит к выводу, что он сможет избежать казни.
Его рассуждения можно разделить на несколько частей. Начинает он с того, что его не могут повесить в пятницу, так как если его не повесят в четверг, то пятница уже не будет неожиданностью. Таким образом, пятницу он исключил. Но тогда, так как пятница уже вычеркнута из списка, он пришел к выводу, что он не может быть повешенным и в четверг, потому что если его не повесят в среду, то четверг тоже не будет неожиданностью.
Рассуждая аналогичным образом, он последовательно исключил все оставшиеся дни недели. Радостным он ложится спать с уверенностью, что казни не произойдет вовсе. На следующей неделе в полдень среды к нему в камеру пришел палач, поэтому, несмотря на все его рассуждения, он был крайне удивлен. Все, что сказал судья, сбылось.

4. Парадокс парикмахера

Предположим, что существует город с одним мужским парикмахером, и что каждый мужчина в городе бреется налысо: некоторые самостоятельно, некоторые с помощью парикмахера. Кажется разумным предположить, что процесс подчиняется следующему правилу: парикмахер бреет всех мужчин и только тех, кто не бреется сам.
Согласно этому сценарию, мы можем задать следующий вопрос: парикмахер бреет себя сам? Однако, спрашивая это, мы понимаем, что ответить на него правильно невозможно:
— если парикмахер не бреется сам, он должен соблюдать правила и брить себя сам;
— если он бреет себя сам, то по тем же правилам он не должен брить себя сам.

3. Парадокс Эпименида

Этот парадокс вытекает из заявления, в котором Эпименид, противореча общему убеждению Крита, предположил, что Зевс был бессмертным, как в следующем стихотворении:

Они создали гробницу для тебя, высший святой
Критяне, вечные лжецы, злые звери, рабы живота!
Но ты не умер: ты жив и будешь жив всегда,
Ибо ты живешь в нас, а мы существуем.

Тем не менее, он не осознавал, что, называя всех критян лжецами, он невольно и самого себя называл обманщиком, хотя он и “подразумевал”, что все критяне, кроме него. Таким образом, если верить его утверждению, и все критяне лжецы на самом деле, он тоже лжец, а если он лжец, то все критяне говорят правду. Итак, если все критяне говорят правду, то и он в том числе, а это означает, исходя из его стиха, что все критяне лжецы. Таким образом, цепочка рассуждений возвращается в начало.

2. Парадокс Эватла

Это очень старая задача в логике, вытекающая из Древней Греции. Говорят, что знаменитый софист Протагор взял к себе на учение Эватла, при этом, он четко понимал, что ученик сможет заплатить учителю только после того, как он выиграет свое первое дело в суде.
Некоторые эксперты утверждают, что Протагор потребовал деньги за обучение сразу же после того, как Эватл закончил свою учебу, другие говорят, что Протагор подождал некоторое время, пока не стало очевидно, что ученик не прикладывает никаких усилий для того, чтобы найти клиентов, третьи же уверены в том, что Эватл очень старался, но клиентов так и не нашел. В любом случае, Протагор решил подать в суд на Эватла, чтобы тот вернул долг.
Протагор утверждал, что если он выиграет дело, то ему будут выплачены его деньги. Если бы дело выиграл Эватл, то Протагор по-прежнему должен был получить свои деньги в соответствии с первоначальным договором, потому что это было бы первое выигрышное дело Эватла.
Эватл, однако, стоял на том, что если он выиграет, то по решению суда ему не придется платить Протагору. Если, с другой стороны, Протагор выиграет, то Эватл проигрывает свое первое дело, поэтому и не должен ничего платить. Так кто же из мужчин прав?

1. Парадокс непреодолимой силы

Парадокс непреодолимой силы представляет собой классический парадокс, сформулированный как “что происходит, когда непреодолимая сила встречает неподвижный объект?” Парадокс следует воспринимать как логическое упражнение, а не как постулирование возможной реальности.
Согласно современным научным пониманиям, никакая сила не является полностью неотразимой, и не существует и быть не может полностью недвижимых объектов, так как даже незначительная сила будет вызывать небольшое ускорение объекта любой массы. Неподвижный предмет должен иметь бесконечную инерцию, а, следовательно, и бесконечную массу. Такой объект будет сжиматься под действием собственной силы тяжести. Непреодолимой силе потребуется бесконечная энергия, которая не существует в конечной Вселенной.

Источники:

http://www.infoniac.ru/news/15-paradoksov-kotorye-vzorvut-vash-mozg.html
http://fb.ru/post/science/2018/11/28/36006
http://m.fishki.net/2130009-12-samyh-znamenityh-paradoksov.html

Ссылка на основную публикацию
Статьи на тему: