Взаимно простые числа – определение, примеры и свойства.

Взаимно простые числа – определение, примеры и свойства.

Информация этой статьи покрывает тему «взаимно простые числа». Сначала дано определение двух взаимно простых чисел, а также определение трех и большего количества взаимно простых чисел. После этого приведены примеры взаимно простых чисел, и показано, как доказать, что данные числа являются взаимно простыми. Дальше перечислены и доказаны основные свойства взаимно простых чисел. В заключение упомянуты попарно простые числа, так как они тесно связаны со взаимно простыми числами.

Навигация по странице.

Взаимно простые числа – определение и примеры

Понятие взаимно простых чисел дается как для двух целых чисел, так и для их большего числа. Сначала приведем определение двух взаимно простых чисел. Это определение дается через наибольший общий делитель чисел, так что рекомендуем сначала разобраться с материалом указанной статьи.

Два целых числа a и b называются взаимно простыми, если их наибольший общий делитель равен единице, то есть, НОД(a, b)=1 .

Из определения взаимно простых чисел следует, что два взаимно простых числа имеют лишь один положительный общий делитель, который равен единице. А всего общих делителей у двух взаимно простых чисел две штуки – это числа 1 и −1 .

Приведем примеры взаимно простых чисел.

Числа 5 и 11 являются взаимно простыми. Действительно, и 5 и 11 – простые числа, следовательно, их положительным общим делителем является только число 1 , что подтверждает взаимную простоту чисел 5 и 11 .

Заметим, что два простых числа всегда являются взаимно простыми. Однако, два числа не обязательно должны быть простыми, чтобы быть взаимно простыми. Либо одно из них, либо они оба могут быть составными и при этом являться взаимно простыми. Приведем пример, иллюстрирующий это высказывание.

Два составных числа 8 и −9 являются взаимно простыми. Обоснуем это. Для этого найдем наибольший общий делитель этих чисел, записав все делители чисел 8 и −9 (при необходимости смотрите статью число делителей числа, все делители числа). Делителями восьмерки является любое из чисел ±1 , ±2 , ±4 , ±8 ; все делители −9 есть числа ±1 , ±3 , ±9 . Следовательно, НОД(8, −9)=1 , поэтому, по определению 8 и −9 – два взаимно простых числа.

А вот числа 45 и 500 не являются взаимно простыми, так как имеют положительный общий делитель, отличный от единицы, которым является число 5 (делимость чисел 45 и 500 на 5 очевидна, если знать признак делимости на 5). Другой парой не взаимно простых чисел является пара 3 и −201 , так как 3 есть их общий положительный делитель (делимость числа −201 на 3 легко устанавливается при помощи признака делимости на 3).

Часто встречаются задания, в которых требуется доказать, что данные целые числа являются взаимно простыми. Доказательство сводится к вычислению наибольшего общего делителя данных чисел и проверке НОД на его равенство единице. Полезно также перед вычислением НОД заглянуть в таблицу простых чисел: вдруг исходные целые числа являются простыми, а мы знаем, что наибольший общий делитель простых чисел равен единице. Рассмотрим решение примера.

Докажите, что числа 84 и 275 являются взаимно простыми.

Читать еще:  Сон ставить в вазу цветы. К чему снится Ваза? К чему снится ваза по соннику - "Сонник: правдивый толкователь сновидений Л.Мороз"

Очевидно, что данные числа не являются простыми, поэтому мы не можем сразу говорить о взаимной простоте чисел 84 и 275 , и нам придется вычислять НОД. Используем алгоритм Евклида для нахождения НОД: 275=84·3+23 , 84=23·3+15 , 23=15·1+8 , 15=8·1+7 , 8=7·1+1 , 7=7·1 , следовательно, НОД(84, 275)=1 . Этим доказано, что числа 84 и 275 взаимно простые.

Определение взаимно простых чисел можно расширить для трех и большего количества чисел.

Целые числа a1, a2, …, ak , k>2 называются взаимно простыми, если наибольший общий делитель этих чисел равен единице.

Из озвученного определения следует, что если некоторый набор целых чисел имеет положительный общий делитель, отличный от единицы, то данные целые числа не являются взаимно простыми.

Приведем примеры. Три целых числа −99 , 17 и −27 являются взаимно простыми. Любая совокупность простых чисел составляет набор взаимно простых чисел, к примеру, 2 , 3 , 11 , 19 , 151 , 293 и 677 – взаимно простые числа. А четыре числа 12 , −9 , 900 и −72 не являются взаимно простыми, так как они имеют положительный общий делитель 3 , отличный от 1 . Числа 17 , 85 и 187 тоже не взаимно простые, так как каждое из них делится на 17 .

Обычно далеко не очевидно, что некоторые числа являются взаимно простыми, и этот факт приходится доказывать. Для выяснения, являются ли данные числа взаимно простыми, приходится находить наибольший общий делитель этих чисел, и на основании определения взаимно простых чисел делать вывод.

Являются ли числа 331 , 463 и 733 взаимно простыми?

Заглянув в таблицу простых чисел, мы обнаружим, что каждое из чисел 331 , 463 и 733 – простое. Следовательно, они имеют единственный положительный общий делитель – единицу. Таким образом, три числа 331 , 463 и 733 есть взаимно простые числа.

Взаимно простые числа и их свойства

Определение1. Целые числа а12,…,akназываются взаимно-простыми, если (а12,…,ak )=1

Определение 2. Целые числа а12,…,ak называются попарно взаимно-простыми, если “i,s (i, s = 1, 2, .. , к, i¹s, (аi, аs) =1).

Если числа удовлетворяют определению 2,то они удовлетворяют и определению 1. Обратное утверждение в общем случае неверно, например: (15, 21, 19)= 1, но (15, 21) = 3

Теорема (критерий взаимной простоты)

(а, b) = 1 $ х, у ÎZ: ах + by = 1

Доказательство:

Докажем необходимость. Пусть (а, b) = 1. Выше мы показали, что если d=(a,b), то $ х, y ÎZ : d = ax +by.

Т.к. в этом случае d =1, то будут $ х, y ÎZ (определяемые из алгоритма Евклида): 1 = ах + bу.

Достаточность. Пусть (*) ах + by = 1, докажем, что (а, b)=1. Предположим, что (a, b) = d, тогда в левой части равенства (*)

(a /d)& (b /d)=> (ах + by) /d => (1/d) => (d=l) => (a, b) = 1.

НОК целых чисел и его свойства.

Определение 1. Общим кратным конечного множества целых чисел а12,…,ak, отличных от нуля, называют целое число m, которое делится на все числа ai (i=l, 2,…, к)

Определение 2. Целое число (m) называется наименьшим общим кратным чисел а12,…,ak, отличных от нуля, если:

1 m – является их общим кратным;

2 (m) делит любое другое общее кратное этих чисел.

Читать еще:  Что ожидает львов в июне. Карьера, бизнес, финансы

Пример. Даны числа: 2, 3, 4, 6, 12.

Числа 12, 24. 48. 96 являются общими кратными чисел 2, 3, 4, 6, 12 Наименьшим общим кратным будет число 12. т.е.

НОК определяется однозначно с точностью до порядка следования сомножителей. Действительно, если предположить, что m1= [а, b] &m2 = [a, b] Þ (m1 / m2) & (m2/m1) => [(m1 = m2) v (m1= – m2)]. Между наименьшим общим кратным и наибольшим общим делителем двух целых чисел существует зависимость, которая выражается формулой: [а, b] = ab/(а, b) (выведите ее самостоятельно)

Эта связь позволяет утверждать, что для любой пары целых чисел, отличных от нуля, существует их наименьшее общее кратное. Действительно, (а, b) – всегда можно однозначно вывести из алгоритма Евклида и по определению (а, b) ¹ 0, тогда дробь a×b/(а, b) ¹ 0 и будет определена однозначно.

Наиболее просто НОК двух целых чисел вычисляется в том случае, когда (а,b)= 1, тогда [а, b] = a×b/1 = а • b

Например, [21, 5] = 21×5/1 = 105, т. к. (21, 5) = 1.

Простые числа и их свойства.

Определение 1. Натуральное число (р) называется простым, если р > 1 и не имеет положит. делителей, отличных от 1 и р.

Определение 2. Натуральное число а >1, имеющее кроме 1 и самого себя другие положительные делители, называется составным.

Из этих определений следует, что множество натуральных чисел можно разбить на три класса:

а) составные числа;

б) простые числа;

Если а – составное, то а = nq, где 1

185.94.188.243 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Взаимно простые числа

Целые числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1. Примеры: 14 и 25 взаимно просты, а 15 и 25 не взаимно просты (у них имеется общий делитель 5).

Наглядное представление: если на плоскости построить «лес», установив на точки с целыми координатами «деревья» нулевой толщины, то из начала координат видны только деревья, координаты которых взаимно просты.

Содержание

Обозначения

Для указания взаимной простоты чисел и используется обозначение [1] :

Однако не все математики признают и используют это обозначение. Чаще всего используется словесная формулировка или эквивалентная запись , что означает: «наибольший общий делитель чисел a и b равен 1».

Связанные определения

  • Если в наборе чисел любые два взаимно просты, то такие числа называются попарно взаимно простыми. Для двух чисел понятия «взаимно простые» и «попарно взаимно простые» совпадают.

Примеры

  • 8, 15 — не простые, но взаимно простые.
  • 6, 8, 9 — взаимно простые числа, но не попарно взаимно простые.
  • 8, 15, 49 — попарно взаимно простые.

Свойства

  • Числа a и b взаимно просты тогда и только тогда, когда выполняется одно из эквивалентных условий.
    • Наибольший общий делительa и b равен единице.
    • Существуют целые x и y такие, что (соотношение Безу).
  • Любые два (различных) простых числа взаимно просты.
  • Если a — делитель произведения bc, и a взаимно просто с b, то a — делитель c.
  • Если числа a1,…, an — попарно взаимно простые числа, то НОК(a1, …, an) = |a1·…·an|. Например, НОК
Читать еще:  Что означает знак стоянка 10 15 20. Дорожные знаки парковки и их значение

Обобщения

Понятия простого числа и взаимно простых чисел естественно обобщаются на произвольные коммутативные кольца, например, на кольцо многочленов или гауссовы целые числа. Обобщением понятия простого числа является «неприводимый элемент». Два элемента кольца называются взаимно простыми, если они не имеют никаких общих делителей, кроме делителей единицы. При этом аналог основной теоремы арифметики выполняется не во всех, а только в факториальных кольцах.

Применение

Обычно число зубьев на звёздочках и число звеньев цепи в цепной передаче стремятся делать взаимно простыми, что обеспечивает равномерность износа: каждый зуб звёздочки будет поочерёдно работать со всеми звеньями цепи.

См. также

Примечания

  1. 12Р. Грэхем, Д. Кнут, О. Паташник Конкретная математика. — М .: «Мир», 1998. — С. 139. — 703 с. — ISBN 5-03-001793-3

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое “Взаимно простые числа” в других словарях:

ВЗАИМНО ПРОСТЫЕ ЧИСЛА — натуральные числа, не имеющие общих делителей, отличных от 1; напр., 15 и 16 … Большой Энциклопедический словарь

взаимно-простые числа — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN relative prime … Справочник технического переводчика

Взаимно-простые числа — Два целых числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1. Содержание 1 Связанные определения 2 Примеры 3 Свойства 4 См. также … Википедия

взаимно простые числа — натуральные числа, не имеющие общих делителей, отличных от 1; например, 15 и 16. * * * ВЗАИМНО ПРОСТЫЕ ЧИСЛА ВЗАИМНО ПРОСТЫЕ ЧИСЛА, натуральные числа, не имеющие общих делителей, отличных от 1; напр., 15 и 16 … Энциклопедический словарь

Взаимно простые числа — несколько целых чисел, таких, что общими делителями для всех этих чисел являются лишь + 1 и 1. Если каждое из этих чисел взаимно просто с каждым другим из них, то говорят, что числа попарно простые (для двух чисел оба понятия совпадают).… … Большая советская энциклопедия

ВЗАИМНО ПРОСТЫЕ ЧИСЛА — целые числа, не имеющие общих (простых) делителей. Наибольший общий делитель В. п. ч. а и b равен единице, это принято обозначать . Если a и b взаимно просты, то существуют такие числа ии v, , , что Понятие взаимной простоты может быть введено… … Математическая энциклопедия

ВЗАИМНО ПРОСТЫЕ ЧИСЛА — натуральные числа, не имеющие общих делителей, отличных от 1; напр., 15 и 16 … Естествознание. Энциклопедический словарь

Простые числа — Простое число это натуральное число, которое имеет ровно 2 различных делителя (только 1 и самого себя). Все остальные числа, не равные единице, называются составными. Таким образом, все натуральные числа, за исключением единицы, разбиваются на… … Википедия

Простые множители — Простое число это натуральное число, которое имеет ровно 2 различных делителя (только 1 и самого себя). Все остальные числа, не равные единице, называются составными. Таким образом, все натуральные числа, за исключением единицы, разбиваются на… … Википедия

Попарно взаимно просты — Два целых числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1. Содержание 1 Связанные определения 2 Примеры 3 Свойства 4 См. также … Википедия

Источники:

http://www.cleverstudents.ru/divisibility/coprime_numbers.html
http://studopedia.ru/5_122127_vzaimno-prostie-chisla-i-ih-svoystva.html
http://dic.academic.ru/dic.nsf/ruwiki/218398

Ссылка на основную публикацию
Статьи на тему: