Признаки делимости нечетных чисел. Основные признаки делимости

Признаки делимости чисел

Признаки делимости чисел на 2, 3, 4, 5, 6, 8, 9, 10, 11, 25 и другие числа полезно знать для быстрого решения задач на Цифровую запись числа. Вместо того, чтобы делить одно число на другое, достаточно проверить ряд признаков, на основании которых можно однозначно определить, делится ли одно число на другое нацело (кратно ли оно) или нет.

Основные признаки делимости

Приведем основные признаки делимости чисел:

  • Признак делимости числа на «2» Число делится нацело на 2, если число является четным (последняя цифра равна 0, 2, 4, 6 или 8)
    Пример: Число 1256 кратно 2, поскольку оно заканчивается на 6. А число 49603 не делится нацело на 2, поскольку оно заканчивается на 3.
  • Признак делимости числа на «3» Число делится нацело на 3, если сумма его цифр делится на 3
    Пример: Число 4761 делится на 3 нацело, поскольку сумма его цифр равна 18 и она делится на 3. А число 143 не кратно 3, поскольку сумма его цифр равна 8 и она не делится на 3.
  • Признак делимости числа на «4» Число делится нацело на 4, если последние две цифры числа равны нулю или число, составленное из двух последних цифр, делится на 4
    Пример: Число 2344 кратно 4, поскольку 44 / 4 = 11. А число 3951 не делится нацело на 4, поскольку 51 на 4 не делится.
  • Признак делимости числа на «5» Число делится нацело на 5, если последняя цифра числа равна 0 или 5
    Пример: Число 5830 делится нацело на 5, поскольку оно заканчивается на 0. А число 4921 не делится на 5 нацело, поскольку оно заканчивается на 1.
  • Признак делимости числа на «6» Число делится нацело на 6, если оно делится нацело на 2 и на 3
    Пример: Число 3504 кратно 6, поскольку оно заканчивается на 4 (признак делимости на 2) и сумма цифр числа равна 12 и она делится на 3 (признак делимости на 3). А число 5432 на 6 нацело не делится, хотя число заканчивается на 2 (соблюдается признак делимости на 2), однако сумма цифр равна 14 и она не делится на 3 нацело.
  • Признак делимости числа на «8» Число делится нацело на 8, если три последние цифры числа равны нулю или число, составленное из трех последних цифр числа, делится на 8
    Пример: Число 93112 делится нацело на 8, поскольку число 112 / 8 = 14. А число 9212 не кратно 8, поскольку 212 не делится на 8.

Признаки делимости на составное число

Чтобы узнать, делится ли заданное число на составное, нужно разложить это составное число на взаимно простые множители, признаки делимости которых известны. Взаимно простые числа – это числа, не имеющие общих делителей кроме 1. Например, число делится нацело на 15, если оно делится нацело на 3 и на 5.

Рассмотрим другой пример составного делителя: число делится нацело на 18, если оно делится нацело на 2 и 9. В данном случае нельзя раскладывать 18 на 3 и 6, поскольку они не являются взаимно простыми, так как имеют общий делитель 3. Убедимся в этом на примере.

Число 456 делится на 3, так как сумма его цифр равна 15, и делится на 6, так как оно делится и на 3 и на 2. Но если разделить 456 на 18 вручную, то получится остаток. Если же для числа 456 проверять признаки делимости на 2 и 9, сразу же видно, что оно делится на 2, но не делится на 9, так как сумма цифр числа равна 15 и она не делится на 9.

Признаки делимости

Содержание

  1. Что такое делимость?
  2. Признаки делимости
  3. На 2,4,8
  4. На 3 и 9
  5. На 5
  6. На 6
  7. На 7
  8. На 10
  9. На 11
  10. Что мы узнали?

Бонус

  • Тест по теме

Что такое делимость?

Признаки делимости позволяют просто и быстро определить, возможно ли полностью поделить одно число на другое. А делимость это и есть возможность поделить одно число на друге без остатка.

Признаки делимости

Признаки делимости удобнее изучать, разбив возможные делители на группы. Поступим так же и рассмотрим делимость на каждую из групп в отдельности.

На 2,4,8

Эти числа в рассматриваемом вопросе сгруппированы, так как их признаки очень похожи друг на друга.

  • Число делится на 2 только если является четным.
  • Число делится на 4, если последние две цифры числа делятся на 4 или последние две цифры 00. Например, число 130 не делится на 4, так как 30 не делится на 4. А вот уже число 1400 можно поделить на 4.
  • Число делится на 8, если последние две цифры числа нули или делятся на 8

На 3 и 9

Число делится на 3, если сумма цифр этого числа делится на 3. Рассмотрим число: 804. Оно делится на 3, поскольку сумма цифр 8+0+4=12 – делится на 3.

Число делится на 9, если сумма цифр числа делится на 9.

Число делится на 5, если последняя цифра числа равняется 5 или нулю. Это наиболее известный признак делимости, наряду с делимостью на 2.

Чтобы число делилось на 6, оно должно делиться на 2 и 3, так как 2*3=6. Поэтому признак делимости на 6 это объединение признаков деления на 2 и на 3.

То есть: число делится на 6, если оно четное и сумма всех его цифр делится на 3

Самые сложные в восприятии признаки делимости на 7 и на 11. Число делится на 7, если разность сумм четных цифр числа и нечетных цифр чисел делится на 7.

Приведем пример: число 469 делится на 7. Почему? Сумма цифр на нечетных позициях 4+9=13. Сумма чисел на четных позициях 6. Разность получившихся сумм: 13-6=7, а это число делится на 7. Поэтому все число 469 делится на 7

На 10

Число делится на 10 только если последней цифрой числа является 0

По тому же принципу определяют делимость числа на 100, 1000 и так далее. Если у числа два нуля на конце, то оно делится на 100, если три нуля на конце, число делится на 1000 и так далее.

На 11

Число делится на 11 только, если разность сумм четных и нечетных цифр числа делится на 11 или равняется нулю Приведем пример:

Число 2035 делится на 11. Сумма цифр, стоящих на четных позициях: 2+3=5. Сумма нечетных цифр: 0+5=5. Разность полученных выражений:5-5=0, значит число делится на 11.

Нельзя путать понятия четной позиции и четного числа. Цифра это знак, который используется для записи чисел. Число это набор цифр, каждая из которых стоит на своей позиции. В числе 127 всего три цифры. Цифра 1 стоит на первой позиции, цифра 2 на второй и так далее. На четной позиции находится цифра 2. На нечетных позициях цифры 1 и 7.

Чтобы быстрее запомнить все группы можно свести в таблицу признаков делимости чисел.

Делимость чисел. Признаки делимости. Основная теорема арифметики

В этой статье – необходимая теория для решения задачи 19 Профильного ЕГЭ по математике. Но это не все. Знания о числах и их свойствах, признаки делимости и формула деления с остатком могут пригодиться вам при решении многих задач ЕГЭ.
Повторим еще раз, какие бывают числа.

Натуральные числа — это числа 1,2,3, . – те, что мы используем для счёта предметов. Ноль не является натуральным числом. Множество натуральных чисел обозначается .

Целые числа — это 0,±1,±2,±3 . Множество целых чисел обозначается .

Рациональные — числа, которые можно записать в виде
дроби , где – целое, а – натуральное.
Например, . Рациональные числа – это периодические десятичные дроби. Множество рациональных чисел обозначается .

Иррациональные числа – те, которые нельзя записать в виде или в виде периодической десятичной дроби. Числа – иррациональные.
Множества рациональных и иррациональных чисел вместе образуют множество действительных чисел .

Число делится на число , если найдется такое число такое, что . Например, 15 делится на 3, а 49 делится на 7. Обозначение:

– Если делится на , то число называется делителем числа .

– Если числа и делятся на , то тоже делится на .

– Если числа и делятся на , а и – целые, то тоже делится на .

Формула деления с остатком. Если , то число делится на с остатком .

Например, при делении 9 на 4 мы получаем частное 2 и остаток 1, то есть 9 = 4∙2 + 1.

Четные числа – целые числа, которые делятся на 2. Любое четное число можно записать в виде , где – целое.

Нечетные числа – те целые числа, что не делятся на 2. Любое нечетное число можно записать в виде , где – целое.

Простые числа – те, что делятся только на себя и на единицу. Единица не является ни простым, ни составным числом. Простые числа: 2, 3, 5, 7, 11, 13, 17, 19…

Числа называются взаимно простыми, если они не имеют общих делителей, кроме 1.

Любое натуральное число можно разложить на простые множители.

Например, 72 = 2∙2∙2∙3∙3, а 98 = 2∙7∙7.

Основная теорема арифметики: Любое натуральное число можно представить в виде произведения простых делителей, взятых в натуральных степенях, причем это разложение единственно.

Например, 72 = 2³∙3².

Количество делителей натурального числа равно .

Наименьшее общее кратное двух чисел (НОК) — это наименьшее число, которое делится на оба данных числа.

Наибольший общий делитель двух чисел (НОД) — это наибольшее число, на которое делятся два данных числа.

последняя цифра числа четная;

сумма цифр числа делится на 3;

число заканчивается на 0 или на 5;

число, составленное из двух последних цифр числа , делится на 4;

число, составленное из трех последних цифр числа , делится на 8;

сумма цифр числа делится на 9;

последняя цифра числа равна 0;

суммы цифр на четных и нечетных позициях числа равны или их разность кратна 11.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Обучающее видео
БЕСПЛАТНО

Техническая поддержка:
help@ege-study.ru (круглосуточно)

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Все поля обязательны для заполнения

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса – от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум – репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля – до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги – 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» – всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.

Это пробная версия онлайн курса по профильной математике.

Вы получите доступ к 3 темам, которые помогут понять принцип обучения, работу платформы и оценить ведущую курса Анну Малкову.

— 3 темы курса (из 50).
— Текстовый учебник с видеопримерами.
— Мастер-класс Анны Малковой.
— Тренажер для отработки задач.

Регистрируйтесь, это бесплатно!

Нажимая на кнопку, вы даете согласие на обработку своих персональных данных

Источники:

http://worksbase.ru/matematika/teoriya/5-priznaki-delimosti-chisel.html
http://obrazovaka.ru/matematika/priznaki-delimosti-tablica-s-primerami.html
http://ege-study.ru/delimost-chisel-priznaki-delimosti-osnovnaya-teorema-arifmetiki/

Читать еще:  Призвание апостолов. Призвание и рукоположение апостолов
Ссылка на основную публикацию
Статьи на тему: