Натуральное чи. Обозначение натуральных чисел

Натуральные числа

Натуральные числа — одно из старейших математических понятий.

В далёком прошлом люди не знали чисел и, когда им требовалось пересчитать предметы (животных, рыбу и т.д.), они делали это не так, как мы сейчас.

Количество предметов сравнивали с частями тела, например, с пальцами на руке и говорили: «У меня столько же орехов, сколько пальцев на руке».

Со временем люди поняли, что пять орехов, пять коз и пять зайцев обладают общим свойством — их количество равно пяти.

Натуральные числа — это числа, начиная с 1 , получаемые при счете предметов.

Наименьшее натуральное число — 1 .

Наибольшего натурального числа не существует.

При счёте число ноль не используется. Поэтому ноль не считается натуральным числом.

Записывать числа люди научились гораздо позже, чем считать. Раньше всего они стали изображать единицу одной палочкой, потом двумя палочками — число 2 , тремя — число 3 .

Затем появились и особые знаки для обозначения чисел — предшественники современных цифр. Цифры, которыми мы пользуемся для записи чисел, родились в Индии примерно 1 500 лет назад. В Европу их привезли арабы, поэтому их называют арабскими цифрами.

Всего цифр десять: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 . С помощью этих цифр можно записать любое натуральное число.

Натуральный ряд — это последовательность всех натуральных чисел:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 …

В натуральном ряду каждое число больше предыдущего на 1 .

Натуральный ряд бесконечен, наибольшего натурального числа в нём не существует.

Систему счёта (счисления), который мы пользуемся, называют десятичной позиционной .

Десятичной потому, что 10 единиц каждого разряда образуют 1 единицу старшего разряда. Позиционной потому, что значение цифры зависит от её места в записи числа, то есть от разряда, в котором она записана.

Разряды и классы (включая класс миллионов) подробно разобраны на нашем сайте в материалах для начальной школы.

Класс миллиардов

Если взять десять сотен миллионов, то получим новую разрядную единицу — один миллиард или в записи цифрами.

1 000 миллионов = 1 000 000 000 = 1 млрд

Десять таких единиц — десять миллиардов, десять десятков миллиардов образуют следующую единицу — сто миллиардов.

Миллиарды, десятки миллиардов и сотни миллиардов образуют четвёртый класс — класс миллиардов.

Разряды и классы натурального числа

Рассмотрим натуральное число 783 502 197 048

C помощью таблицы разрядов прочитаем это число. Для этого надо слева направо по очереди называть количество единиц каждого класса и добавлять название класса.

Название класса единиц не произносят, также не произносят название класса, если все три цифры в его разрядах — нули.

Теперь прочтем число 783 502 197 048 из таблицы: 783 миллиарда 502 миллиона 197 тысяч 48 .

Читать еще:  14 февраля какой христианский праздник. Церковный Православный праздник февраля

Любое натуральное число можно записать в виде разрядных слагаемых.

Числа 1, 10, 100, 1000 … называются разрядными единицами. С их помощью натуральное число записывается в виде разрядных слагаемых. Так, например, число 307 898 будет выглядеть в виде разрядных слагаемых.

307 898 = 300 000 + 7 000 + 800 + 90 + 8

Проверить свои вычисления вы можете с помощью нашего калькулятора разложения числа на разряды онлайн.

Следующие за миллиардом классы названы в соответствии с латинскими наименованиями чисел. Каждая следующая единица содержит тысячу предыдущих.

  • 1 000 миллиардов = 1 000 000 000 000 = 1 триллион («три» — по латыни «три»)
  • 1 000 триллионов = 1 000 000 000 000 000 = 1 квадриллион («квадра» — по латыни «четыре»)
  • 1 000 квадриллионов = 1 000 000 000 000 000 000 = 1 квинтиллион («квинта» — по латыни «пять»)

Все числа пересчитать невозможно, поскольку за каждым числом следует число на единицу большее, но очень большие числа в повседневной жизни не нужны.

Однако, физики нашли число, которое превосходит количество всех атомов (мельчайших частиц вещества) во всей Вселенной.

Это число получило специальное название — гугол. Гугол — число, у которого 100 нулей.

Обозначение натуральных чисел

Натуральные числа – числа, которые применяют для счета предметов. Любое натуральное число можно записать с помощью десяти цифр:0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Такую записьчисел называют десятичной.

Последовательность всех натуральных чисел называют натуральным рядом.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, .

Самое маленькое натуральное число – единица (1). В натуральном ряду каждое следующее число на 1 больше предыдущего. Натуральный ряд бесконечен, наибольшего числа в нем нет.

Значение цифры зависит от ее места в записи числа. Например, цифра 4 означает: 4 единицы,если она стоит на последнем месте в записи числа (в разряде единиц);4 десятка, если она стоит на предпоследнем месте (в разряде десятков);4 сотни, если она стоит на третьем месте от конца разряде сотен).

Цифра0 означает отсутствие единиц данного разряда в десятичной записи числа.Она служит и для обозначения числа «нуль». Это число означает «ни одного». Счет 0 : 3 футбольного матча говорит о том, что первая команда не забила ни одного гола в ворота противника.

Нуль не относят к натуральным числам. И действительно счет предметов никогда не начинают с нуля.

Если запись натурального числа состоит из одного знака одной цифры, то его называют однозначным.Т.е. однозначное натуральное число – натуральное число, запись которого состоит из одного знака одной цифры. Например, числа 1, 6, 8 – однозначные.

Двузначное натуральное число – натуральное число, запись которого состоит из двух знаков – двух цифр.

Читать еще:  Как вызвать фею желаний в домашних условиях. Что понадобится для вызова в домашних условиях

Например, числа 12, 47, 24, 99 – двузначные.

Так же по числу знаков в данном числе дают названия и другим числам:

числа 326, 532, 893 – трехзначные;

числа 1126, 4268, 9999 – четырехзначные и т.д.

Двузначные, трехзначные, четырехзначные, пятизначные и т.д. числа называют многозначными числами.

Для чтения многозначных чисел их разбивают, начиная справа, на группы по три цифры в каждой (самая левая группа может состоять из одной или двух цифр). Эти группы называют классами.

Миллион – это тысяча тысяч (1000 тыс.), его записывают 1 млн или 1 000 000.

Миллиард – это 1000 миллионов. Его записывают 1 млрд или 1 000 000 000.

Три первые цифры справа составляют класс единиц, три следующие – класс тысяч, далее идут классы миллионов, миллиардов и т.д. (рис. 1).

Рис. 1. Класс миллионов, класс тысяч и класс единиц (слева направо)

Число15389000286 записано в разрядной сетке (рис. 2).

Рис. 2. Разрядная сетка: число 15 миллиардов 389 миллионов 286

Это число имеет 286 единиц в классе единиц, нуль единиц в классе тысяч, 389 единиц в классе миллионов и15 единиц в классе миллиардов.

Чтобы прочитать число, называют слева по очереди число единиц каждого класса и добавляют название класса. Не произносят название класса единиц, а также класса, все три цифры которого – нули.

Натуральные числа

Натура́льные чи́сла — числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления).

Существуют два подхода к определению натуральных чисел — числа, используемые при:

  • перечислении (нумеровании) предметов (первый, второй, третий…) — подход, общепринятый в большинстве стран мира (в том числе и в России).
  • обозначении количества предметов (нет предметов, один предмет, два предмета…). Принят в трудах Бурбаки, где натуральные числа определяются как мощности конечных множеств.

Отрицательные и нецелые числа — натуральными числами не являются.

Множество всех натуральных чисел принято обозначать знаком .

Существует бесконечное множество натуральных чисел — для любого натурального числа найдется другое натуральное число, большее его.

Содержание

Определение

Аксиомы Пеано

Введём функцию S , которая сопоставляет числу x следующее за ним число.

  1. ( 1 является натуральным числом);
  2. Если , то (Число, следующее за натуральным, также является натуральным);
  3. (1 не следует ни за каким натуральным числом);
  4. Если S(b) = a и S(c) = a , тогда b = c (если натуральное число a непосредственно следует как за числом b , так и за числом c , то b = c );
  5. Аксиома индукции. Пусть P(n) — некоторый одноместный предикат, зависящий от параметра — натурального числа n . Тогда:

если P(1) и , то (Если некоторое высказывание P верно для n = 1 (база индукции) и для любого n при допущении, что верно P(n) , верно и P(n + 1) (индукционное предположение), тоP(n) верно для любых натуральных n ).

Читать еще:  Сонник толкование пить водку. К чему пить водку во сне

Теоретико-множественное определение

Согласно теории множеств, единственным объектом конструирования любых математических систем является множество.

Таким образом, и натуральные числа вводятся, исходя из понятия множества, по двум правилам:

Числа, заданные таким образом, называются ординальными.

Первые несколько ординальных чисел и соответствующие им натуральные числа:

Классы эквивалентности этих множеств относительно биекций также обозначают 0, 1, 2, ….

Замечание

Иногда, в иностранной и переводной литературе, в первой и третьей аксиомах заменяют 1 на 0 . В этом случае ноль считается натуральным числом.

В русской литературе обычно ноль исключен из числа натуральных чисел , а множество натуральных чисел с нулем обозначается как .

Если в определение натуральных чисел включен ноль, то множество натуральных чисел записывается как , а без нуля как .

Операции над натуральными числами

К замкнутым операциям (операциям, не выводящим результат из множества натуральных чисел) над натуральными числами относятся следующие арифметические операции:

  • Сложение. Слагаемое + Слагаемое = Сумма
  • Умножение. Множитель * Множитель = Произведение
  • Возведение в степеньab , где a — основание степени и b — показатель степени. Если основание и показатель натуральны, то и результат будет являться натуральным числом.

Дополнительно рассматривают ещё две операции. С формальной точки зрения они не являются операциями над натуральными числами, так как не определены для всех пар чисел (иногда существуют, иногда нет).

  • Вычитание. Уменьшаемое – Вычитаемое = Разность. При этом Уменьшаемое должно быть больше Вычитаемого (или равно ему, если считать 0 натуральным числом).
  • Деление. Делимое / Делитель = (Частное, Остаток). Частное p и остаток r от деления a на b определяются так: a = p * b + r , причём . Заметим, что именно последнее условие запрещает деление на ноль, так как иначе a можно представить в виде a = p * 0 + a , то есть можно было бы считать частным 0 , а остатком = a .

Следует заметить, что именно операции сложения и умножения являются основополагающими. В частности, кольцо целых чисел определяется именно через бинарные операции сложения и умножения.

Теоретико-множественные определения

Воспользуемся определением натуральных чисел как классов эквивалентности конечных множеств. Будем обозначать класс эквивалентности множества A относительно биекций как [A]. Тогда основные арифметические операции определяются следующим образом:

  • [A] [B] = [AB ]

где — дизъюнктное объединение множеств, — прямое произведение, A B — множество отображений из B в A. Можно показать, что полученные операции на классах введены корректно, то есть не зависят от выбора элементов классов, и совпадают с индуктивными определениями.

Основные свойства

  1. Коммутативность сложения.
  2. Коммутативность умножения.
  3. Ассоциативность сложения.
  4. Ассоциативность умножения.
  5. Дистрибутивность умножения относительно сложения.

Алгебраическая структура

Сложение превращает множество натуральных чисел в полугруппу с единицей, роль единицы выполняет 0. Умножение также превращает множество натуральных чисел в полугруппу с единицей, при этом единичным элементом является 1. С помощью замыкания относительно операций сложения-вычитания и умножения-деления получаются группы целых чисел и рациональных положительных чисел соответсвенно.

Источники:

http://math-prosto.ru/?page=pages/set-of-numbers/natural.php
http://3ys.ru/naturalnye-chisla/oboznachenie-naturalnykh-chisel.html
http://dic.academic.ru/dic.nsf/ruwiki/1056714

Ссылка на основную публикацию
Статьи на тему: